APPIL seeks to broaden the understanding of basic physiology and pathophysiology of the lung along with pulmonary disease co-morbidities using quantitative imaging. APPIL also strives to rapidly use emerging insights for the translation of new image-based methodologies into tools that are applicable to the broader research community and clinical practice for the improved diagnosis, phenotyping, and treatment of lung disease.

Under the direction of Dr. Eric Hoffman within the Department of Radiology, APPIL is a lung imaging, research-based laboratory within I-CLIC and is founded upon more than 30 years of continuous funding. Both Dr. Hoffman and Dr. Newell (Radiologist and APPIL Director of Translational Research) are members of the Fleischner Society in recognition of their significant contributions to quantitative lung imaging dating back to the very beginning of x-ray computed tomography. Early studies served to validate CT as a tool for assessing lung volume, regional air content, regional lung expansion, airway segmentation and vessel segmentation. These works were focused upon the use of purpose built, one- of-a kind scanner systems (the Dynamic Spatial Reconstructor) and the electron beam CT scanner. With the emergence of multidetector-row CT scanners, the group was awarded a 5 year, $10M Bioengineering Research Partnership (successfully renewed for the maximum 10 years of total funding) by the NIH to establish MDCT as a comprehensive imaging modality to assess the structure and function of the human lung, establishing normal ranges of airway and parenchymal metrics along with regional characteristics of ventilation and perfusion assessed via dynamic axial CT imaging.

Furthermore, APPIL serves as the Radiology Center for a number of NIH sponsored multi-center studies seeking to utilize imaging as a biomarker for assessing pathology and predicting outcomes. Studies include the National Emphysema Treatment Trial (NETT), the Severe Asthma Research Program (SARP), MESA- Lung, COPDGene, and more recently our lab serves as the Radiology Center for the NIH sponsored "SubPopulations and InteRemediate Outcome Measures in COPD Study" (SPIROMICS). A Bioengineering Research Partnership Grant serves as the current flagship of the lung imaging efforts. In this recently funded BRP (Hoffman, PI), investigators seek to establish protocols for functional dual energy computed tomographic imaging (taking advantage of multi-spectral CT capabilities to simplify protocols for integration into multi-center trials), to link CT phenotypes to quantitative measures of lung inflammation, in order to evolve lung modeling tools so that they can be applied to larger population studies and to provide tools for multi-center quality control.

While x-ray computed tomography (CT) is providing quantitative maps of lung destruction and airway remodeling, these anatomic markers may be insufficient to identify initial causal factors of emphysema that can drive new effective therapeutic interventions. The APPIL group has recently focused on the use of both dual energy CT (DECT) to assess indices of regional pulmonary blood flow (PBF) and single photon emission computed tomography (SPECT) to assess pulmonary inflammation in order to better define the mechanisms that lead to a smoking-associated COPD phenotype. Recent findings, published in the Preceedings of the National Academy of Science, have suggested that CT derived regional PBF parameters within inflamed lung parenchymal destruction in a subset of smokers susceptible to centrilobular emphysema. It is thought that the inability to maintain perfusion to inflamed lung regions may form the basis for a broad spectrum of inflammatory lung disorders.

As a member of the Iowa Institute for Biological Imaging, the Iowa Comprehensive Lung Imaging Center represents a group of loosely knit collaborators who have joined together with a common interest in the use of quantitative imaging techniques to better understand the normal lung and the permutations leading to and defining pathologic states. Each member of this group is well recognized in their own right and their backgrounds are diverse, including Physiology, Medicine, Radiology, Anaesthesiology, Mathematics, Electrical Engineering, Biomedical Engineering, and more. While each of these individuals run successful laboratories, there is a clear need for a dedicated imaging center, which serves as a gathering place and provides these individuals access to state-of-the-art facilities in which to accomplish their research. This site provides a means of interacting with and influencing industrial partners in regards to the future directions of imaging technologies, and it provides a synergy serving to rapidly advance both the field of lung imaging and our understanding of the lung. While primarily focusing on advanced CT imaging, areas of interest have also expanded to MRI and PET.

The mission of Iowa Institute for Biological Imaging is to foster efficient and cooperative interdisciplinary and cross-college research and discovery in biomedical imaging, and to improve training and education within the broader community at the University of Iowa.

One of several teams of investigators that is currently housed in the recently constructed Pappajohn Biomedical Discovery Building, the IIBI was formed in 2007 as an acknowledgement of a long history of interdisciplinary collaboration at the University of Iowa. The formation of the interdisciplinary institute reflects a strong institutional support to biomedical imaging and image analysis as well as translational medical research. The IIBI brings together more than 40 faculty members (out of which over 25 hold faculty positions in the Carver College of Medicine, 15 hold faculty positions in the college of Engineering with a primary expertise in biomedical image analysis) and over 60 graduate students and postdoctoral fellows.