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Overview 

The work presented in the accompanying manuscript was part of a pilot study, funded by 

the University of Iowa Environmental Health Research Center (NIH 5P30 ES005605), to explore 

the impact of biomass fuel use, particularly indoor use, on lung function and health using advanced 

CT imaging techniques. In addition to pilot data, this project also served to establish international 

collaborations between the researchers at the University of Iowa (UI) in the United States and at 

the Periyar Maniammai Institute of Science and Technology (PMIST) in Thanjavur, India. The 

study was approved by the Indian Council for Medical Research (ICMR) and by the Human 

Subjects IRB at the University of Iowa. 

 

Subject engagement and geographical location 

As a pilot study, this work was limited in the number of subjects and study locations, but 

it provided a greater insight into the community at large, including valuable information on fuel 

types, detailed analysis of combustion and bioaerosol particles generated in the indoor cooking 

environment, the associated neighborhood community environment, and individual subjects’ 



quality of life, and lung function metrics. All subject recruitment and field work for this project 

were carried out in the Thanjavur district in the state of Tamil Nadu, in India (Figure E1). To 

maximize data collection from biomass homes, and due to the scarcity of adequate controls within 

in the same communities (to avoid other potential confounders), we had an unbalanced cohort size, 

with over 80% of subjects belonging to the biomass group. All subjects reported no history of 

pulmonary or cardiovascular disease, however, detailed medical records in the geographical region 

are uncommon, and rural community members may ignore health conditions unless it significantly 

affects their quality of life. Therefore, some underlying conditions may be undiagnosed. 

Environmental factors cannot be completely decoupled from such conditions, and an 

epidemiological study is needed to better characterize the prevalence of respiratory diseases in 

these communities. 

 

Field work and data acquisition 

A team of US investigators (ASKP, EMS, APC, EAH) traveled to Thanjavur, India in 2019 

for field work associated with data collection. The Indian efforts were coordinated by investigators 

and students at PMIST, through their well-established community relations. Two study locations 

(inset, Figure 1) were identified, one in the immediate vicinity of the Indian institution (peri-

urban), and second, a village approximately 20 miles from the urban area. Both teams visited site 

locations and interacted with the potential subjects to provide detailed overviews of the scientific 

background, study aims and protocols, and expected outcomes, in the local language, Tamil. All 

subjects underwent a urine pregnancy test prior to recruitment for the CT imaging component of 

the study. Thirty-four homes were initially recruited for the study. Exposure data from two homes 

were excluded due to equipment malfunctions. 



 

Characterization of the cooking environment 

 Experts in environmental research from the US team (EMS, APC) conducted visual kitchen 

assessment in each home, detailing information on stove location and height, fuel type, ventilation 

and window locations, average kitchen area, presence of domestic animals, and building material 

of the stove, walls, and roof. A typical example from a brick-walled home is shown in Figure E2, 

depicting the stove, biomass fuel, and windows providing cross-ventilation. Participants also 

completed a survey on their cooking and personal exposure history, and a brief medical 

questionnaire. The air quality of the cooking environment was quantified by the following data 

collection steps: 1) Vacuuming sediment mass collected over a 7-day period from clean rubber-

backed rugs placed in the kitchens. 2) Daily PM2.5 concentrations measured using gravimetric 

analysis using a filter from a personal sampler with a size-selective inlet (UPAS, Access Sensor 

Technologies, Ft. Collins, USA); 3) 24-hour fluctuations in PM2.5 measurements using a direct 

reading instrument (PATS+, Berkeley Air, Berkeley, USA); 4) Black carbon concentrations using 

a filter absorption coefficient derived from the UPAS filters; and 5) Endotoxin concentrations 

analyzed at UI and derived from an electrostatic dust collector, over both a 24-hour and 7-day 

period. Rug mass from two homes was excluded due to accidental interference. Back carbon 

measurements were not performed in three homes due to high particle load, above the sensitivity 

thresholds of the filter. Our team performed further biochemical and microbiological analyses on 

cooking environment samples to further quantify particulate chemical and bacterial composition, 

in-vitro assays to test particulate cytotoxicity, effects on antimicrobial activity, and alterations to 

cell wall permeability and conductance. A detailed overview of these analyses and results has been 



previously published (23).  In brief, the cooking environment of biomass homes had significantly 

higher concentrations of PM2.5, black carbon, and endotoxin. 

In addition, we quantified the ambient levels of airborne fungal pathogens.  β-(1,3)-D-

glucan concentration were determined using the Glucatell® assay of air samples collected EDC 

filter membranes. The assay is based upon a modification of the Limulus Amebocyte Lysate (LAL) 

pathway. The reagent does not react to other polysaccharides, including β-glucans with different 

glycosidic linkages, and is a well-established β-(1,3)-D-glucan measurement method (53–55). 

Samples were analyzed with appropriate negative and blank-control samples to obtain the final β-

(1,3)-D-glucan concentrations in the sample. Samples were typically collected over an 

approximate 24-hr window, and the concentrations were scaled by the exact duration of exposure 

and extrapolated to a 7-day (168 hours) adjusted estimate for uniform comparison. 

 

Physiological Assessment 

 A subset of 25 subjects were recruited for physiological assessment. All subjects underwent 

a standardized pulmonary function test at a nearby hospital. Spirometry was performed before and 

after administration of 200μg of Salbutamol, under the supervision of a trained technician at a 

partnering hospital.  

 

CT imaging protocols and quality control 

 The imaging parameters outlined in the SPIROMICS protocol (16) were used in this study. 

The scanner specific settings for GE scanner models were applied to the GE Optima 128 slice 

scanner used in the study. Scan settings, Table E1, were modulated for patient size based on BMI 

estimates from measured height and weight. A CT density phantom (The Phantom Laboratory, 



Salem, NY, USA) was transported to India for calibration purposes (16). At study onset, the 

phantom was used to verify dose estimates for the specified scan parameters and for validation of 

HU values. Calibrations were performed on the same week as subject data acquisition. All imaging 

was performed by a trained CT technician, under the supervision of a resident Radiologist (SN). 

CT imaging experts from the US (EAH, ASKP) provided additional review of the acquisition 

protocols and inspiration maneuvers to total lung capacity (TLC) and residual volume (RV) for 

the CT technologist and observed all studies. Image datasets were deidentified at the imaging site 

and transferred via CDs (one for each subject) to secure servers at the UI for image processing. 

 

Image processing 

Standard densitometric analysis was performed on the TLC and RV datasets to label 

individual voxels as emphysematous (below -950HU on TLC images), air-trapped (below -856HU 

on RV images), or normal, as in the parametric response map (PRM) approach. While the PRM 

uses image registration, voxel labels are based on static density thresholds at the specified lung 

volumes. In contrast, to assign voxel labels, the disease probability measure (DPM) approach 

generates a probability map based on estimates of regional lung volume change from image 

registration, and the resident lung volume at RV. We hypothesized that in the presence of diffuse 

inflammation, as may be expected from high inhalation exposures, the DPM approach would be 

less susceptible to the inflammation associated lung density shifts compared to the PRM reliance 

on density thresholds. The image registration approach also provides regional estimates of the 

Jacobian, which is a measure of regional lung expansion, and Anisotropic Diffusion Index (ADI), 

a measure of the non-uniformity of regional lung expansion. Whole lung measures (mean and 

coefficient of variation) of the Jacobian and ADI metrics provide insight into alterations in patterns 



of ventilation distribution and tissue compliance. The Total Airway Count ratio (TACratio), i.e. 

ratio of countable airway branches at TLC and RV, provides additional information on airway 

morphometry and dynamic compression, resulting from tissue compliance and branch stiffness. 

All CT analyses described above were carried out by VIDA Diagnostics Inc. (Coralville, IA) using 

their proprietary Apollo 2.0 image analysis software. 

Additional CT metrics related to texture classification were performed by an in-house 

developed software package, the Pulmonary Analysis Software Suite (PASS). A modified version 

of  3D Adaptive Multiple Feature Method (AMFM) (28) was applied on the CT volume acquired 

at TLC. This CT analysis technique calculates a set of 27 volumetric features, including statistical, 

fractal, and histogram features, on 7.5 × 7.5 × 7.5 mm lung tissue sub-volumes (we refer to here 

as patches), and applies a Bayesian classifier to label such patches as emphysematous, ground 

glass, ground glass-reticular, honeycombing, bronchovascular, or normal. This technique has 

previously been applied for parenchymal characterization in smokers (28), and in patients with 

interstitial lung disease (29, 56).  

 

Summary 

 This pilot study successfully provided a well-quantified assessment of the cooking 

environment’s indoor air quality and characterized pulmonary function and regional lung 

mechanics via multi-volume CT imaging. There is a need for a larger scale approach to expand 

this study to explore the impact of biomass fuels and the relative contributions of indoor and 

occupational exposures. We believe that this preliminary data can drive new hypotheses on the 

acute insults to the lung suffered from biomass cooking smoke, and the potential mechanisms of 

pathogenesis and progression of chronic lung disease in these at-risk communities. 
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Figure E1. Red boxes indicate study locations (Thanjavur) and the location of the state capital 

(Chennai). Subject recruitment was carried out in Vallam and Budalur villages, seen in the inset. 

Indian investigators are based in the village of Vallam. 



 

Figure E2. Example of an indoor cooking stove from a subject home in Thanjavur. Stoves are 

typically located at floor height, or slightly elevated on bricks. When present, windows provide 

occasional passive ventilation. Particulate matter can persist in ambient air after cooking and this 

was identified by our real-time PM2.5 devices. Particulate matter deposits on walls and floors and 

can later be resuspended into the air, increasing the probability of its inhalation. 

 

  



Table E1. CT Scan parameters 

kVp 120 

mAs – Inspiration (TLC)  

 Small (BMI < 20) 145 

 Medium (20 ≤ BMI < 

30) 

180 

 Large (30 ≤ BMI) 270 

mAs – Expiration (RV)  

 Small (BMI < 30) 100 

 Medium/large (30 ≤ 

BMI) 

145 

Thickness (mm) 0.625 

Rotation time (s) 0.5 

Detector configuration 64 × 0.625 

Pitch 0.984 

Interval (mm) 0.5 

 

 

 

 

 


